

1. Caracterização da Unidade Curricular

1.1 Designação

[3158] Matemática Aplicada à Engenharia / Mathematics Applied to Engineering

1.2 Sigla da área científica em que se insere

CEE, MAT

1.3 Duração

Unidade Curricular Semestral

1.4 Horas de trabalho

135h 00m

1.5 Horas de contacto

Total: 47h 00m das quais T: 45h 00m | O: 2h 00m

1.6 ECTS

5

1.7 Observações

Unidade Curricular Obrigatória

2. Docente responsável

[1088] Pedro Jorge da Silva Pereira

3. Docentes e respetivas cargas [1088] Pedro Jorge da Silva Pereira | Horas Previstas: 45 horas letivas na unidade curricular

Objetivos de aprendizagem (conhecimentos, aptidões e competências a desenvolver pelos estudantes)

Após a aprovação na unidade curricular, o aluno deverá possuir a capacidade de:

- 1. Analisar fenómenos periódicos usando as Séries de Fourier;
- 2. Modelar problemas com interesse físico e integrar as equações diferenciais resultantes, tendo em conta os métodos analíticos e numéricos para a resolução de problemas de valores iniciais e de valores na fronteira;
- 3. Desenvolver um raciocínio estruturado e demonstrar capacidade analítica e crítica na resolução de problemas no domínio da engenharia.

4. Intended learning outcomes (knowledge, skills and competences to be developed by the students)

After the student is approved on this course, he should be able to:

- 1. Analyse periodic phenomena using Fourier series;
- 2. Model problems with physical interest and integrate the resultant differential equations, considering analytical and numerical methods for solving initial and boundary value problems:
- 3. Develop structural thinking and demonstrate analytical and critical capacity solving engineering problems.

5. Conteúdos programáticos

- 1. Introdução à Análise de Fourier. Funções periódicas. Séries de Fourier. Fórmulas de Euler para os coeficientes de Fourier. Desenvolvimentos de Meia-Gama. Forma complexa das séries de Fourier. Oscilações forçadas. Aproximação por polinómios trigonométricos. Erro quadrático.
- 2. Equações com derivadas parciais. Equação de onda unidimensional. Método de separação de variáveis. Solução D'Alembert da equação de onda. Fluxo de calor. Método de separação de variáveis para a equação do calor unidimensional com condições de fronteira de Dirichlet, Neumann, dependentes do fluxo de calor e não homogéneas. Equação do calor bidimensional no estado estacionário: Equação de Laplace.
- 3. Integração numérica da Equação de Laplace, Equação de Poisson, equação do calor unidimensional e equação de onda unidimensional.

5. Syllabus

- **1.** Introduction to Fourier Analysis. Periodic functions. Fourier series. Euler's formulas for the Fourier coefficients. Half-range expansions. Complex form of the Fourier series. Forced oscillations. Approximation by trigonometric polynomials. Square error.
- 2. Partial differential equations. One-dimensional wave equation. Method of separating variables. D'Alembert's solution of the wave equation. Heat flow. Method of separating variables for the one-dimensional heat equation with boundary conditions of Dirichlet, Neumann, dependent on the heat flow and non-homogeneous. Steady-state two-dimensional heat flow: Laplace's Equation.
- **3.** Numerical integration of Laplace's Equation, Poisson's Equation, one-dimensional heat equation and one-dimensional wave equation.

 Demonstração da coerência dos conteúdos programáticos com os objetivos de aprendizagem da unidade curricular

Os objetivos são cumpridos com a apresentação dos conteúdos programáticos dos capítulos da unidade curricular, nos quais são amplamente desenvolvidas as capacidades de análise, cálculo e raciocínio dedutivo.

Para além da teoria estudada em cada capítulo, o recurso sistemático a problemas que ilustram os diferentes conceitos ministrados, traduz-se numa maior motivação, eficácia e espetro de aprendizagem por parte dos alunos. Em particular, as aplicações concretas possibilitam:

- transmitir o facto de que os conceitos do cálculo constituem uma ferramenta indispensável no estudo da engenharia;
- praticar a formulação matemática de problemas, a sua resolução e a crítica dos resultados obtidos;
- ajudar os alunos a reconhecer os conceitos e as técnicas estudadas quando estes surgirem em outros cursos da sua trajetória académica.

6. Evidence of the syllabus coherence with the curricular unit's intended learning outcomes

The goals are met with the presentation of the chapters of the syllabus, in which analysis, algebra and deductive reasoning skills are widely developed.

In addition to the theory studied in each chapter, the systematic use of problems that illustrate the different given concepts, yields increase of motivation, efficiency and spectrum of learning by the students. In particular, the concrete applications enable:

- to convey the fact that the concepts of calculus constitute an indispensable tool in the study of engineering;
- to practice the mathematical formulation of problems, their solution and criticism of the obtained results;
- to help students to recognize the concepts and techniques studied when they appear in the study of other courses of their academic trajectory.

7. Metodologias de ensino (avaliação incluída)

Aulas teóricas, onde os conceitos fundamentais, definições e problemas são apresentados de uma forma clara usando os materiais de suporte disponíveis para o ensino.

A avaliação por exame final tem uma única vertente: Regime de Exame.

A avaliação é feita somente por exame final através da realização de um exame global e escrito em que o aluno obtém aprovação com uma nota maior ou igual a 9,5 valores.

ISEL NATITUTO SUPERIOR DE LA NACENHARIA DE LISBOA

Ficha de Unidade Curricular A3ES Matemática Aplicada à Engenharia Mestrado em Engenharia Química e Biológica 2024-25

7. Teaching methodologies (including assessment)

Theoretical lectures, where the fundamental concepts, definitions and problems are presented in a clear way using the teaching supporting materials available.

The final exam assessment has only one strand: Final exam.

The final exam assessment consists of a global written exam and the student is approved with a grade greater than or equal to 9.5 values.

8. Demonstração da coerência das metodologias de ensino com os objetivos de aprendizagem da unidade curricular

As aulas teóricas são essenciais a uma rigorosa e completa cobertura dos tópicos do programa. A resolução de exercícios em contexto de aula permite ilustrar a aplicação prática dos conceitos e ferramentas estudados, ao mesmo tempo que se aprofundam os conhecimentos teóricos.

Com estes procedimentos, os alunos podem desenvolver um raciocínio estruturado e demonstrar capacidade analítica e crítica na resolução de problemas no domínio da engenharia.

8. Evidence of the teaching methodologies coherence with the curricular unit's intended learning outcomes

The theoretical lectures are essential to a correct and comprehensive coverage of all topics of the syllabus. The in-class solution of exercises allows the illustration of the practical application of the concepts and the tools studied, enhancing the theoretical knowledge.

With the adopted procedures, the students can develop structural thinking and demonstrate analytical and critical capacity solving engineering problems.

9. Bibliografia de consulta/existência obrigatória

- consulta/existência obrigatória 1. Kreyszig, E., "Advanced Engineering Mathematics", John Wiley & Sons, 10th Ed., 2011.
 - 2. Figueiredo, D. G., "Análise de Fourier e Equações Diferenciais Parciais", IMPA, Projeto Euclides, 5th Ed., 2018.
 - 3. McQuarrie, D., A., "Mathematical Methods for Scientists and Engineers", University Science Books, 2003.

10. Data de aprovação em CTC 2024-07-17

11. Data de aprovação em CP

2024-06-26